Progress in EV Battery Recycling – Kinsbursky Brothers

DSC_8707Some of you may have seen the guest blog on Tesla’s battery recycling program I contributed to Michelle Lynch’s new “Enabled Future” website last month. There is always more to pieces like this than meets the eye as, usually, more time is spent on research than on the actual writing of a new report. Traditionally, Tesla has been quite transparent in such matters but a lot of time has passed since the conception and launch of their “Gigafctory” in Nevada. Apparently, the company is working on novel approaches to the topic that they don’t want to see released prematurely.

So I contacted Kinsbursky Brothers to check if the information provided by Tesla in 2008 is still accurate. Daniel Kinsbursky, Vice President at Kinsbursky Brothers, kindly answered a set of questions I submitted.

gm-ev1Kinsbursky has been in business since the mid 1980’s, focusing on battery recycling from the start. Their first exposure to electric vehicle (EV) battery recycling came in the late 1990’s, when the lead acid batteries from General Motor’s iconic “EV1” had to be recycled. The company subsequently expanded into Li-ion by becoming the largest shareholder in Retriev Technologies with locations in Lancaster, OH, and Trail, BC (Canada).

With respect to the company’s overall business vis-a-vis the recycling of Tesla batteries, Kinsbursky explained: “We offer our battery recycling services to a number of different brands, across multiple applications beyond just EV and hybrid vehicles. For instance, we receive a significant volume of Li-Ion batteries from consumer applications, such as cell phones, laptops/tablets, power tools, and really almost any modern device that requires mobile power. That being said, we expect the largest growth area for our recycling services to be in the automotive sector.”

As a privately held company, Kinsbursky does not share information on recycling volumes or revenues. They did, however, confirm seeing a significant increase in EV batteries year over year, and expect volumes to increase at much higher rates once more of the Li-ion powered EV and hybrid vehicles reach the end of their life cycles. Kinsbursky points out that a recent market study estimates the worldwide Li-ion battery recycling market volume to be US$ 1.78 billion (in 2017) with a projection to reach US$ 23.7 billion by 2030.

Their process for battery recycling hasn’t changed significantly from what I described in my blog. However, Kinsbursky points out that “our goal is to be the first company to commercialize a battery-to-battery recycling process, whereby materials like lithium and cobalt recovered from a used battery can be reutilized in a new battery without any additional intermediary steps.”

With respect to the amount of material sent to landfill (25% according to Tesla’s 2008 blog), the good news is that this has been reduced to below 10%. Kinsbursky explained: “The amount of materials sent to the landfill from our process is largely dependent on the feedstock. Our process is capable of recovering all battery metals, including cobalt, nickel and lithium. Nevertheless, many battery packs utilize different grades of plastic and separator materials, which can consist of mixed quality grades of little recycling value in this commingled form. This is typically less than 10% of the battery mass. … It should also be noted that 10-15% of the battery mass is an electrolyte solvent which is digested within our process.”

Asked to comment on the pros and cons of their recycling method compared to ultra-high temperature incineration, Kinsbursky responded: “There are two common methodologies for the recycling and management of lithium ion batteries. hydrometallurgical and pyrometallurgical. Umicore’s process utilizes pyrometallurgical. Each type of system has its own benefits and deficiencies. As you stated, the UHT process would be more energy demanding than a hydrometallurgical process, and the hydrometallurgical system would be more forgiving in the type of material that can be processed.

Our current physical/mechanical process removes any electrical hazards and shreds and separates the batteries into usable commodity feeds. We are essentially a pre-processor for pyrometallurgical downstream processors. The advantage of our process is that it separates the metals into more concentrated feeds for the pyrometallurgical processes, thereby increasing efficiency and energy usage. Our long-term goal of producing battery materials will utilize additional hydrometallurgical processes on the back-end of our existing processes. We think over-all this will provide a lower energy pathway to closing the loop on lithium ion battery recycling when compared to the pyrometallurgical route.”

In conclusion, a lot of progress has been made, and new developments (David Kinsbusrsky did not want to comment on these) are on the horizon. Closed loops, or nearly closed recycling loops, seem possible provided that manufacturers and recyclers continue working together towards this goal.

Reuters Interview / Q&A on the impact of Hydrogen Fuel Cell vehicles on Platinum

Reuters BannerFuel cell electric vehicles (FCEV) vs. battery electric vehicles (BEV) – the precious metals industry is rightfully concerned about this battle. While FCEVs will utilize platinum in their fuel cells, BEVs need none, and each electric vehicle sold of either kind means that one less standard emission control catalyst has been sold. Reason for Reuters to inquire about the scale of the potential effects.

I sometimes feel like a doomsday prophet when I’m just tallying up statements and facts from people and governments in charge, that inevitably lead to one conclusion: electrification is near, and there is no sufficient hydrogen supply infrastructure to counter the expansion of electric charging.

Better to deal with the issue now than staring into an abyss a decade down the road. Precious metals, combined with rare earth elements and other “strategic” metals, are indispensable in making a sustainable planet a reality. So let’s focus on a vision for this world in 2040, and start working towards it.

To read a transcript of the Q&A session please click here.

Update: I just discovered the direct link to Reuter’s summary: click here to read.

Metallic Hydrogen – a new Era in Fuel Storage?

Since the Hindenburg disaster, hydrogen has been known more for its risks than its uses as a fuel component. In its liquid form it has of course been used as rocket fuel, and more recently it has made an entrance as a potential alternative to lithium-ion batteries in cars. Not only is lithium-ion not free from hazards itself, the batteries also add more weight and volume to a device than a tank full of H2. Setting up a supply infrastructure remains an issue, and storage risks make people uncomfortable.

Diamond Anvil

What if hydrogen could be produced in its metallic form? A metal, easy and safe to transport and store? What if this metal could be readily re-converted to its liquid state as needed to be used in fuel cells? A vision of a distant future, perhaps, but professor Isaac Silvera of Harvard University claims to have just taken the first step, the creation of metallic hydrogen. I had a very interesting conversation with him, the product of which was just published on Kitco News. Here is the link: http://www.kitco.com/commentaries/2017-03-21/Metallic-Hydrogen-a-New-Area-in-Hydrogen-Storage.html

 

Cobalt – from secret ingredient to superstar

Cobalt started coming into focus when the industry became aware of its crucial importance to lithium-ion technology. Since then, several Tech Metal Insider articles on Kitco News have dealt with the subject:

Cobalt – the secret ingredient in lithium ion batteries: https://bodoalbrecht.com/2015/10/02/cobalt-the-secret-ingredient-in-lithium-ion-batteries/

BYD (Build your Dreams) – cobalt vs iron oxide technology: https://bodoalbrecht.com/2016/04/28/byd-disrupting-the-markets-for-lithium-and-cobalt/

Ethical concerns on cobalt mining raised by Amnesty International: https://bodoalbrecht.com/2016/10/10/cobalt-prices-on-the-rise-amidst-ethical-concerns/

mitch-smithThe latter topic in particular raised the question of ethical alternatives for cobalt mined in the Democratic Republic of Congo, a country that just declared it had to postpone democratic elections for lack of funds. One company promising such an alternative is Global Energy Metals of Vancouver, Canada. Mitchell Smith, president and CEO of GEM who is also a very active supporter of alternative energy in social media, told me more about the company and its plans. Click here to read the interview on Kitco News.

 

Hydrogen is here – my interview with Trevor Milton of Nikola Motors

Nikola – Mr. Tesla’s first name, chosen not by chance, I suppose, as the name for the “other” electric car company completely focused on heavy duty trucks. Interestingly, although the canikola_one_10-87a4458ec7068a27e4fb41f4f9f91d4f9137d5ce938b9b917021f02663db242frs are – strictly speaking – battery powered, Trevor Milton and his team chose to add a hydrogen fuel cell for clean charging, and range extension.

And it doesn’t stop there – Nikola Motors wants the hydrogen to be produced in sustainable ways, too, and is therefore building a network of solar farms across the country to do so.

Click here to read my interview with Trevor Milton, CEO of Nikola Motors, on Kitco News.